42 research outputs found

    Advanced Flame Retardant Materials

    Get PDF
    Recent disasters caused by the spread of fire in buildings and in transportations remind us of the importance of fire protection. Using flame-retardant materials is one important element of the firefighting strategy, which aims to prevent fire development and propagation. These materials are used in different applications, such as in textiles, coatings, foams, furniture, and cables. The development of more efficient and environmentally friendly flame-retardant additives is an active multidisciplinary approach that has attracted a great deal of interest. Studies have aimed at the development of new, sustainable, and flame-retardant additives/materials, providing high performance and low toxicity. Also studied were their properties during ageing and recycling, as well as modeling physical and chemical processes occuring before ignition and during their combustion. The development of sustainable flame retardants and understanding their modes of action provide a strong link between these topics and cover many fields from organic chemistry, materials engineering, and toxicology, to physics and mathematics

    Lignin Nanoparticles as A Promising Way for Enhancing Lignin Flame Retardant Effect in Polylactide

    Get PDF
    International audienceThe present study investigates the effect of using lignin at nanoscale as new flame-retardant additive for polylactide (PLA). Lignin nanoparticles (LNP) were prepared from Kraft lignin microparticles (LMP) through a dissolution-precipitation process. Both micro and nano lignins were functionalized using diethyl chlorophosphate (LMP-diEtP and LNP-diEtP, respectively) and diethyl (2-(triethoxysilyl)ethyl) phosphonate (LMP-SiP and LNP-SiP, respectively) to enhance their flame-retardant effect in PLA. From the use of inductively coupled plasma (ICP) spectrometry, it can be considered that a large amount of phosphorus has been grafted onto the nanoparticles. It has been previously shown that blending lignin with PLA induces degradation of the polymer matrix. However, phosphorylated lignin nanoparticles seem to limit PLA degradation during melt processing and the nanocomposites were shown to be relatively thermally stable. Cone calorimeter tests revealed that the incorporation of untreated lignin, whatever its particle size, induced an increase in pHRR. Using phosphorylated lignin nanoparticles, especially those treated with diethyl (2-(triethoxysilyl)ethyl) phosphonate allows this negative effect to be overcome. Moreover, the pHRR is significantly reduced, even when only 5 wt% LNP-SiP is used

    Recycled Tire Rubber in Additive Manufacturing: Selective Laser Sintering for Polymer-Ground Rubber Composites

    No full text
    Natural and synthetic rubber is gaining increased interest in various industrial applications and daily life sectors (automotive industry, acoustic and electrical isolators, adhesives, impermeable surfaces, and others) due to its remarkable physicomechanical properties, excellent durability, and abrasive resistance. These great characteristics are accompanied by some recycling difficulties of the final products, particularly originated from the tire waste rubber industry. In this study, recycled tire rubber was incorporated in polymer matrices using selective laser sintering as 3D printing technology. Two polymers were used-polyamide and thermoplastic polyurethane, for their rigid and elastomeric properties, respectively. Polymer composites containing various tire powder amounts, up to 40 wt.%, were prepared by physical blending. The final materials’ morphological characteristics, mechanical properties, and thermal stability were evaluated. The proposed ambitious additive manufacturing approach looked over also some of the major aspects to be considered during the 3D printing procedure. In addition, examples of printed prototypes with potential applications were also proposed revealing the potential of the recycled tire rubber-loaded composites

    Valorization of Recycled Tire Rubber for 3D Printing of ABS- and TPO-Based Composites

    No full text
    Vulcanized and devulcanized ground tire rubber microparticles have been used as a minor phase in acrylonitrile butadiene styrene copolymer (ABS) and thermoplastic polyolefins (TPO) for the development of materials with desired functionalities by 3D printing. These polymers have been selected because they (i) present part of the plastic waste generated by the automotive industry and (ii) have totally different properties (ABS for its stiffness and robustness and TPO for its softness and ductility). The study aims to improve the circular economy of the automotive industry by proposing a promising route for recycling the generated tire rubber waste. In this respect, emergent technology for plastic processing such as 3D printing is used, as part of the additive manufacturing technologies for the prolongated end of life of recycled plastics originated from automotive waste such as ABS and TPO. The obtained results revealed that (i) the composites are suitable for successful filament production with desired composition and diameter required for successful 3D printing by fused deposition modeling, and that (ii) the optimization of the composition of the blends allows the production of materials with interesting mechanical performances. Indeed, some of the investigated ABS-recycled rubber tire blends exhibit high impact properties as TPO-based composites do, which in addition exhibits elongation at break higher than 500% and good compression properties, accompanied with good shape recovery ratio after compression

    Engineering Polypropylene–Calcium Sulfate (Anhydrite II) Composites: The Key Role of Zinc Ionomers via Reactive Extrusion

    No full text
    Polypropylene (PP) is one of the most versatile polymers widely used in packaging, textiles, automotive, and electrical applications. Melt blending of PP with micro- and/or nano-fillers is a common approach for obtaining specific end-use characteristics and major enhancements of properties. The study aims to develop high-performance composites by filling PP with CaSO4 β-anhydrite II (AII) issued from natural gypsum. The effects of the addition of up to 40 wt.% AII into PP matrix have been deeply evaluated in terms of morphology, mechanical and thermal properties. The PP–AII composites (without any modifier) as produced with internal mixers showed enhanced thermal stability and stiffness. At high filler loadings (40% AII), there was a significant decrease in tensile strength and impact resistance; therefore, custom formulations with special reactive modifiers/compatibilizers (PP functionalized/grafted with maleic anhydride (PP-g-MA) and zinc diacrylate (ZnDA)) were developed. The study revealed that the addition of only 2% ZnDA (able to induce ionomeric character) leads to PP–AII composites characterized by improved kinetics of crystallization, remarkable thermal stability, and enhanced mechanical properties, i.e., high tensile strength, rigidity, and even rise in impact resistance. The formation of Zn ionomers and dynamic ionic crosslinks, finer dispersion of AII microparticles, and better compatibility within the polyolefinic matrix allow us to explain the recorded increase in properties. Interestingly, the PP–AII composites also exhibited significant improvements in the elastic behavior under dynamic mechanical stress and of the heat deflection temperature (HDT), thus paving the way for engineering applications. Larger experimental trials have been conducted to produce the most promising composite materials by reactive extrusion (REx) on twin-screw extruders, while evaluating their performances through various methods of analysis and processing

    Non-Isothermal Crystallization Kinetics and Activation Energy for Crystal Growth of Polyamide 66/Short Glass Fiber/Carbon Black Composites

    No full text
    This study presents the effect of the addition of 0.4 wt.% carbon black (CB) to polyamide 66 (PA66) containing 30 wt.% short glass fibers (GFs) on the behavior of composite thermal crystallization. Composites were studied by differential scanning calorimetry analysis (DSC) at different cooling rates using wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM). This thermal crystallization study highlights the nucleation effect of GFs that promote PA66 crystallization by significantly increasing crystallization kinetics and rates. The activation energies (Eas) calculated by model-free (FWO; KAS) and model-fitting (Kissinger method and C–R method) approaches showed that the combination of both GF and CB decreases the activation energy with respect to neat PA66, meaning that the presence of both additives facilitates crystallization. The Coats–Redfern and Criado methods showed that the crystallization of neat PA66 and related composites follows the second-order reaction, i.e., the decelerated reaction, evidencing compatibility between GFs and the matrix

    Engineering Polypropylene–Calcium Sulfate (Anhydrite II) Composites: The Key Role of Zinc Ionomers via Reactive Extrusion

    No full text
    Polypropylene (PP) is one of the most versatile polymers widely used in packaging, textiles, automotive, and electrical applications. Melt blending of PP with micro- and/or nano-fillers is a common approach for obtaining specific end-use characteristics and major enhancements of properties. The study aims to develop high-performance composites by filling PP with CaSO4 β-anhydrite II (AII) issued from natural gypsum. The effects of the addition of up to 40 wt.% AII into PP matrix have been deeply evaluated in terms of morphology, mechanical and thermal properties. The PP–AII composites (without any modifier) as produced with internal mixers showed enhanced thermal stability and stiffness. At high filler loadings (40% AII), there was a significant decrease in tensile strength and impact resistance; therefore, custom formulations with special reactive modifiers/compatibilizers (PP functionalized/grafted with maleic anhydride (PP-g-MA) and zinc diacrylate (ZnDA)) were developed. The study revealed that the addition of only 2% ZnDA (able to induce ionomeric character) leads to PP–AII composites characterized by improved kinetics of crystallization, remarkable thermal stability, and enhanced mechanical properties, i.e., high tensile strength, rigidity, and even rise in impact resistance. The formation of Zn ionomers and dynamic ionic crosslinks, finer dispersion of AII microparticles, and better compatibility within the polyolefinic matrix allow us to explain the recorded increase in properties. Interestingly, the PP–AII composites also exhibited significant improvements in the elastic behavior under dynamic mechanical stress and of the heat deflection temperature (HDT), thus paving the way for engineering applications. Larger experimental trials have been conducted to produce the most promising composite materials by reactive extrusion (REx) on twin-screw extruders, while evaluating their performances through various methods of analysis and processing

    Tailoring and Long-Term Preservation of the Properties of PLA Composites with “Green” Plasticizers

    No full text
    Concerning new polylactide (PLA) applications, the study investigates the toughening of PLA–CaSO4 β-anhydrite II (AII) composites with bio-sourced tributyl citrate (TBC). The effects of 5–20 wt.% TBC were evaluated in terms of morphology, mechanical and thermal properties, focusing on the enhancement of PLA crystallization and modification of glass transition temperature (Tg). Due to the strong plasticizing effects of TBC (even at 10%), the plasticized composites are characterized by significant decrease of Tg and rigidity, increase of ductility and impact resistance. Correlated with the amounts of plasticizer, a dramatic drop in melt viscosity is also revealed. Therefore, for applications requiring increased viscosity and enhanced melt strength (extrusion, thermoforming), the reactive modification, with up to 1% epoxy functional styrene–acrylic oligomers, was explored to enhance their rheology. Moreover, larger quantities of products were obtained by reactive extrusion (REX) and characterized to evidence their lower stiffness, enhanced ductility, and toughness. In current prospects, selected samples were tested for the extrusion of tubes (straws) and films. The migration of plasticizer was not noted (at 10% TBC), whereas the mechanical and thermal characterizations of films after two years of aging evidenced a surprising preservation of properties
    corecore